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Abstract: A key and expanding field in the 

renewable energy sector is wind energy prediction. 

Given that biofuels are absorbed into existing 

programs and integrated with conventional sources, 

determining the amount of energy that will be 

delivered is crucial to lowering the wind farm's 

production costs and assuring the safety of grid 

access. In this research, we'll apply several cutting-

edge Deep Learning techniques to a variety of 

machine learning problems, including the 

development of a prediction model for wind energy 

output.Convolutional neural networks and deep, 

fully integrated layer perceptron networks that may 

profit from the spatial and hierarchical aspects of 

statistical current weather patterns will both be 

taken into account. We'll also explore the 

consequences of regularization techniques like 

weight decay and dropout, and consider which are 

the best predictive deep models after analyzing the 

development of their retraining. 

Keywords: Forecasting, Wind Energy, Deep 

learning 

 

I. INTRODUCTION 
Multilayer Perceptrons (MLPs) started to 

undergo a little decline about 1990 after 

experiencing a big initial impact. Even while the 

deep residual computation of the gradient of the 

MLP error function could be carried out in a pretty 

straightforward manner, the challenge of designing 

successful MLPs with three or more layers was a 

particularly puzzling one. The vanishing gradient 

issue [8], which was partially brought on by 

insufficient weight initialization, was the root cause 

of this.. 

This radically changed after G. Hinton and 

R. Salakhutdinov published their seminal study 

[12], which showed how an unconstrained layering 

scheme based on Boltzmann machines could create 

a satisfactory indexing (or pretraining) of the 

weights of a many-layered MLP. The model was 

then effectively improved via classifier. Soon after, 

Y. Bengio and his associates [4] presented a 

comparable but marginally simpler pretraining 

method based on stacked machine learning 

algorithms. The interest in deep MLPs, or MLPs 

with three or more layers, and deep learning in 

general, has recently increased as a result ofthis. 

As a result of this focus, the initial Hinton 

and Bengio schemes have been significantly 

simplified, and numerous new theories and 

techniques have been introduced to the MLP field. 

These include new classifiers and the repairs of 

some of the original MLP recipes, such as sigmoid 

installations or weight decay regularization, with 

new concepts like linear activation unit (ReLU) 

activations [9] or underachievement regularization 

[18]. Furthermore, because of the enormous 

datasets and deep MLP parameters, batch learning 

is generally not a possibility. As a result, many 

studies have focused on the selection of learning 

rates (or how to avoid them) or impetus techniques 

like Nesterov's acceleration. Online education 

frequently takes place over minibatches of 

randomly selected sequences.This raises the issue 

of when to stop training, which was fairly easy in 

the batch training of conventional MLPs if the right 

regularization and an efficient optimizer were used. 

A variety of initialization strategies have been 

proposed that enable the training of successful deep 

models once the preconditions are met, making the 

need for specialized (and expensive) pretraining 

less pressing. A good example of such a complete 

approach is [19]. A purely convolutional layer is 

combined with a convolutional layer. Another 

crucial component of effective deep learning 

systems is this layer, which examines inputs 

utilizing localized pane filters with a pooling 

sublayer that pools the outputs of the preceding 

sublayer..Thanks to processing developed by Y. 

LeCun in the late 1990s, convolutional convnets 

have achieved cutting-edge results in tasks like 

MNIST [7] or ImageNet [14]. This processing is 

especially natural when inputs possess a spatial 

structure, as it does with photographs. 
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It is now possible to train very large deep 

nodes with dozens of weights successfully because 

to all these advancements, hence it is crucial to use 

applications that can take advantage of high-

performancehardware with parallel computing (i.e., 

multicore processors) and vectorization (i.e., GPU 

units). 

Due to the field's quick rate of growth and 

the absence of a recognized multipurpose design, it 

is also advised to rely on publicly accessible 

libraries and environments like the Pylearn2-

Theano libraries [5] [3] [10] that we use or the 

Caffe [13] deep learning framework. 

Whatever the case, it seems that the 

primary areas of attention for research into deep 

learning include computer vision, speech 

recognition, and problems with natural language 

recognition. This is at least partially predictable 

given the striking parallels connecting deep 

learning architectures and the processor systems in 

the visual cortex [13]. More and more, deep 

learning algorithms are being seen as pattern 

matching processes that generate higher abstract 

concepts at each layer so that characteristics in the 

upper layers capture perhaps more powerful 

concepts.. 

However, a strategy like this could work 

well for smaller regression problems that still 

contain input patterns with a spatial structure. The 

goal of this research is to anticipate wind energy 

production. Spain is a world leader in wind energy, 

with a very high penetration rate, and can 

occasionally meet a sizeable amount of its 

electricity requirements. It follows that it is 

essential to provide accurate wind energy 

predictions, with the recommended models being 

Support Vector Regression (SVR) for large-scale 

forecasting and simple MLPs (typically at the farm 

level). These models receive their inputs from 

numerical weather prediction (NWP) systems like 

the ECMWF [1] and the GFS [2].A variety of 

weather variables are projected at certain locations 

using a rectangular grid that covers the target 

regions and reflects some foundation orographic 

model. Thus, one may interpret an area-wide NWP 

forecast as a set of feature maps (the various 

meteorological variables) with a spatial structure, 

much to how the RGB channels of an image 

correlate to feature maps with a two-dimensional 

structure (that of the underlying geography). 

Convolutional networks are one of the 

models that will be considered in this study since, 

according to the previous plan, they make sense for 

generating wind energy prediction. Our main 

objective is to offer a method for developing 

models that can produce precise forecasts from the 

initial data with the least amount of pre-processing 

and specialist knowledge. As a result, we must 

explicitly decide in advance on network 

initialization, online training, activation function, 

and regularization approach given the enormously 

large array of alternatives in the literature. 

Naturally, a more or less universal network 

architecture must also be adopted in addition to 

this. 

We will go into more detail about our 

choices in the next sections. In addition to the 

standard "small" MLPs and SVR models that we 

use as reference performance metrics, we will 

consider deep MLPs with a standard multilayer 

structure, general deep cnn networks (CNNs), as 

well as an ability to adapt of the well-known LeNet 

[6], one of the most effective hardware platforms 

for computer vision. We'll employ Glorot-Bengio 

weight configuration [8, ReLUs as ann [9], attrition 

denoising [8,] load rating rotting in the final 

thoroughly layers of all of those thick nets, 

conjugate gradient as the classifier, random mini-

batch autoencoder over batches of moderate size, 

and random mini-batch back propagation over 

batches of smaller sizes.As a result, we may 

operate with a constant, generally applicable 

learning rate that is no longer an explorable 

parameter. We review some of the most current 

DNN concepts and provide general 

recommendations for using deep MLPs to 

regression problems. 

We thoroughly investigate the potential 

applications of the two main DNN paradigms to the 

problem of local and worldwide wind energy 

projection. 

For the purpose of predicting wind energy, 

we provide a modification of the well-known 

LeNet convolutional neural network and show that 

it is super competitive with other DNN designs or 

modern methods like Support Vector Regression. 

We will use the Pylearn2 [10]-Theano [3] 

[5] platform, as mentioned earlier, because it 

provides a wide range of neural networks that have 

been thoroughly tested and allows us to study many 

of the most current and effective ideas for deep 

network training. Given the web sizes and input 

attributes we work with, we can benefit from 

Theano's skills for program execution on GPUs. 

One of the key advantages of adopting Theano as 

the base numerical library is this. We run our 

testing on a machine with an NVidia Tesla K40 

GPU, enabling us to investigate a significant 

number of deep modeling setups with suitable 

execution rates. 



 

 

International Journal of Engineering, Management and Humanities (IJEMH) 

Volume 3, Issue 6, pp: 185-194                                                      www.ijemh.com                 

                                      

 

 

 

www.ijemh.com                                        Page 187 

II. LITERATURE REVIEW 
A multiple neural network was 

constructed by Catalao et al. The organization 

found that Levenberg-cascaded Marquardt's 

arrangement beat ARIMA and the permanence 

model for short-term prediction models. A dnn 

array method was also created for projecting 

renewable energy. [7] 

Focken et al. [5] examined how regional 

filtering factors decreased the model complexity of 

combined generating electricity in the case of wind 

turbine aggregation. Scientists Pöller and Achilles 

[6] who study electromagnetics are mentioned. 

investigated the possibility of combining many 

breezes into one power. A more in-depth 

description of the methodology we utilized for our 

study's based on wind power prediction was 

originally presented in [10], which was followed by 

an introduction to it. 

 

III. METHODOLOGY 
In its early phases, machine learning 

needed enough computing capacity to function 

successfully across a variety of applications [2]. 

Because primary memory, space, and 

contemporary computers have become more 

efficient, handling larger amounts of data is now 

simpler. 

 

 
Figure 1 Forecast flow diagram 

 

A. Wind Power Prediction 

Numerous studies show that the utilization of wind 

energy has greatly expanded in recent years. The 

EU increased its renewable energy capacity by 

12,800 MW in 2015. There are now 141 GW of 

megawatts available, of which 131 GW are located 

on land and 11 GW offshore [106]. With 45 GW, 

many European nations have the most installed 

capacity in the EU. As capacity grows, so does the 

need for projections that are more precise and 

reliable for a range of situations. This chapter 

provides an introduction to the spatiotemporal 

explanatory variables used in this research, covers 

the use of regulatory technology methodologies, 

and makes predictions about renewables.. 

 

B. Use Strategies for Predicting Electricity 

Generation 

Precise duration predictions are necessary 

for many use scenarios. The distance that the power 

or wind strength value must be projected in front of 

the current time point t0 is specified by the 

projection horizon t. 

The sale of wind and solar energy in the 

electricity markets, which can only be effective 

with correct estimates since the gas has already 

been distributed, makes substantial use of forecasts. 

The electromagnetics industry appears to have a 

trend toward shorter prediction horizons. For all 

day sectors of the European Voltage Source 

converter, the limit has been decreased to 30 

minutes.. 

 

Table  1 for a characterization of distinct success 

 
Spot1. In the hydrocarbons trading 

industry, prediction periods ranging from minutes 

to days are typical for interday and overnight 

forecasts. 

Grid realignment also needs precise 

estimations. Making early choices on reserve 

power and redistribution is necessary to fulfill the 

important aim of preserving grid voltage and 

frequency stability. Stakeholders include system 

managers and any energy source that injects 

electrons into the grid. Plans for electrical 

balancing also call for precise calculations. Control 

energy, also known as balances electricity, 

manages unforeseen grid events. In the European 

Union2, there is a cost for the public's access to 

regulations.. 

In the future, storage will become much 

more valuable. When should batteries or other 

energy storage devices be charged, and when 

should energy be used? The building of synthetic 

Horizon Time Range Applications 
 

Very short-term Few seconds – 30 minutes Market clearing 

Trading 

Balancing 

Virtual Power Plants 
 

Short-term 30 minutes – 6 hours Load balancing 

Intraday trading 

Regulation 

Medium-term 6 hours – 1 day Day-Ahead trading 

Price optimization 

Long-term 1 day – 1 week or more Planning of reserve energy 

Scheduling of maintenance 
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power plants, which are composed of several types 

of power trees and bushes yet function as a single 

unit, also makes use of forecasting. 

Table 3.1 categorizes the various forecast periods 

and includes usage examples. The methods that are 

currently practical for these projections are 

described in Section 3.2. 

 

C. State of the Art 

Numerical weather prediction (NWP) 

models and forecasts based on historical time series 

fall into two categories [22,29]. Both sectors 

employ a wide variety of methodologies and hybrid 

processes. An examination of wind power 

estimation techniques is provided by Foley et al. in 

[29]. 

A review on predicting produced power 

and wind direction was published by Lei et al. [3]. 

The detailed analysis of the methodologies by 

Soman et al.[12] focuses on their potential 

applications across a range of scopes. The 

numerous wind power forecasting techniques are 

characterized by Wang et al. [9]. 

 

1. Numerical Weather Prediction 

Using physical estimates to characterize the 

climatic system, such as radiation, dispersion, and 

pressure values, NWP models are created. Navier-

Stokes calculations are commonly used to explain 

the motion of liquid droplets because of regular 

principles [9]. Models with varying capacities, 

whether regional or worldwide, can be used to 

forecast the weather. The National Weather 

Prediction Program (NWP) is utilized in order to 

cope with fine spatial resolution and enhance 

atmospheric process models.. 

 

 
Figure 2 The German Accuweather gives 

examples of NWP.3 

 

At research and weather service 

companies, models are computed on quantum 

computers. Forecasts are made for a range of 

purposes in study and application, as opposed to 

being created for a specific purpose [9]. The model 

generates a rough grid of predictions that account 

for both the wind speed and direction as well as the 

regional atmospheric conditions. The wind speed of 

the chosen turbine is calculated using a grid with 

grid points that span a few kilometers [9]. Using 

the power curve of the turbine, the speeds are 

translated into a power value (see Figure 3.2).. 

These models have a variety of flaws 

while being frequently utilized. The weather 

systems that make them publicly available 

determine what may be expected. Forecasts are 

only available at specific times, and the time 

periods that can be used are always fixed. Physical 

models find it exceedingly difficult to accurately 

anticipate the climate because it is chaotic; as a 

result, other methods, such as chance and statistic, 

perform better over short forecast horizons. The 

response surface method (rsm) (CFD) has lately 

gained in favor alongside these strategies. Using 

the model provided by Marti and colleagues [10], 

four-hour forecasting is feasible. 

 
Figure 3. The power curve of an Enercon E-82 

wind turbine5. For each wind speed, the expected 

power is given 

 

In algorithmic meteorology, ensemble 

models are frequently employed for prediction [4]. 

On the one hand, anticipation may increase. Instead 

of using a predictable forecast, the Bayes theorem 

may be utilized to produce a prediction interval 

using uncertainty analysis. An ensemble forecast, 

which is a single prediction, is produced by 

combining many NWP models with varied starting 

points. Due of the dearth of trustworthy data on the 

status of the atmosphere in the realm of NWP 

models, this method is very useful. Even slight 

alterations to the original parameters have a major 

impact on the expected outcome.  

The mathematical calculations of these 

cluster projections are quite labor-intensive. 

noteworthy development Gneiting et al. [6] 

developed communities using the ensemble model 

output statistics (EMOS) approach to account for 

different local weather variations and decrease 

prediction accuracy. Similar techniques are used by 
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Thorarinsdottir and Gneiting [10] to calculate the 

average wind speeds over the American Pacific 

Northwest..As Mahoney et al. [8] show, combining 

several NWP techniques into an ensemble can be 

quite beneficial. The emphasis on innovation 

placed by the NWP batch is one of the hypotheses 

employed. fitted using an analog batch Kalman 

filter and a regression. Junk et al. [12] present an 

analysis of a number of extension options using the 

example of an analog quintet. A system is used to 

generate both the forecast and the information 

regarding uncertainty. 

 

2. Statistical  Learning 

It has now been established that data 

mining approaches work well for predicting wind 

speed and skill. Neural networks [2] and k-NN [12] 

are examples of effective systems. When given 

geographical data, machine learning techniques can 

offer reliable prediction results. 

Support vector classification beats 

numerical climatologists for the shortest 

timeframes, according to Treiber et al. [11]. Based 

on projections from weather data in Germany, 

neural networks beat post-processed hydrological 

models by up to three hours (DWD). More than six 

hours should be spent using environmental 

measures. We want to enhance suggestions for this 

time period because there are numerous programs 

for short-term forecasting and the data-driven 

approach has several benefits. In the future, a 

variety of longer time horizons may benefit from 

hybridization with meteorological approaches. The 

sections that follow discuss the most important ml 

methods and their results. 

 

3. Support Vector Techniques 

The SVM approach is really useful. 

advantageous for modeling and classification 

applications. In instance, improved prediction skills 

can be achieved. The strategy serves as the 

foundation for our recommended solution and is 

covered in detail in Chapter 5. The SVR algorithm 

was used by Kramer and Gieseke [12] to predict 

short-term wind power with success. This study 

analyzes loss function variation, and evaluations of 

the projection at the grid point and park levels 

show that SVR appears to perform well when -

loss6 is used.. 

Mohandes et al. [13] also determine wind 

speed using SVM. Performance of SVM prediction 

is comparable to MLP learning methods. Generally 

speaking, the SVM model is preferable to the 

learning approach. On the other hand, the findings 

are restricted to the Madina, Saudi Arabia, mean 

day dataset and do not offer data for short-term 

planning horizons.. 

 

IV. SYSTEM IMPLEMENTATION 
In this part, we'll use machine learning to 

forecast wind energy output, first over the Spanish 

peninsula and subsequently on the Sotavento wind 

farm. 

 

A. NWP and Production Data 

The European Centre for Medium-Range Weather 

Forecasts (ECMWF) system's eight forecast for 

weather variables that we will use for weather 

forecasts (NWP) are as follows: 

– P, the pressure at surface level. 

– T, the temperature at 2m. 

– Vx, the x wind component at surface level. 

– Vy, the y wind component at surface level. 

– V , the wind norm at surface level. 

– Vx
100

, the x wind component at 100m. 

– Vy
100

, the y wind component at 100m. – V 
100

, the wind norm at 100m. 

 

The input dimension in the Sotavento 

instance is therefore 1598 = 1,080 since the 

measurements are made on a 15 x 9 rectangular 

grid that is centered on the Sotavento location 

(43.34N, 7.86W). With a very high input size of 57 

35 8 = 15,960, we now explore a 57 x 35 

rectangular grid that completely encloses the 

Iberian peninsula for peninsular Spain. 

The general public can get information 

about Sotavento's wind energy; Peninsular Spain's 

information was kindly provided by Red Electrica 

de Espa?a (REE). In order to normalize them to the 

[0,1] range, we divide the actual wind energy 

output by the greatest attainable value in each 

situation. Our study will make use of data from the 

years 2011, 2012, and 2013, which will be utilized 

as the training, validation, and test subsets, 

respectively. Because NWP predictions are 

released every three hours, each subset will 

typically contain (24/3) 365 = 2,920 patterns. 

 

B. Deep Models 

We'll examine deep networks that have all 

of their layers completely linked, which we call 

deep MLPs, as well as deep convolutional neural 

networks, often known as deep CNNs, which 

feature a number of initial convolutional layers 

followed by completely integrated ones. We will 

employ Algorithm 1 Over search using Support 

Vector Regression (SVR) products and "standard" 

one hidden layer MLPs as past approaches.. 
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. Because there are so many different alternative 

architectures and alternatives available to them, 

there would be an overwhelming number of model 

hyperparameters to research in order to find the 

best ones. In order to limit this as much as possible, 

we first set a couple of them to fair levels that 

resulted in respectable results in a first coarse 

model examination. 

One such choice is the deep designs, which 

should be taken into account. For deep MLPs, we 

will consider two hidden layers with the same 

number of units. The standard deep CNN (sdCNN), 

our initial deep CNN choice, will begin with a 

convolutional layer and move on to two fully 

linked layers that each have the same number of 

units. For our second CNN alternative, which we 

call LeNet CNN or lnCNN, we will modify the 

well-known LeNet-5 architecture [16], which was 

developed specifically for the MNIST character 

recognition problem. 

We'll employ non-symmetric ReLUs at the 

hidden layers and, as was previously discussed, 

we'll use the Glorot-Bengio heuristic from [8] to 

initialize the network by scaling up the initial 

weights by a factor of 1.5 and using a 0-symmetric 

uniform distribution with a width adjusted to the 

layers' fan-in. 

Our training strategy will be conjugate 

gradient descent (CGD) across a set of random 

mini-batches. We used values of either 200 or 250, 

or about 6% and 9% of the learning sample size, 

because the size of the weights does affect the 

network's performance. In other words, we apply 

CGD over each new mini-batch starting with the 

loads established over the preceding mini-batch. 

Our error measure is the mean absolute error 

(MAE) 

, 

where D(x;P) denotes the depth of the current deep 

network D built using the pattern x's set of 

parameterized P. We employ the MAE rather than 

the more popular squared error because it 

represents energy deviation and, consequently, the 

energy to be lost or recovered from alternative 

generating sources to make up for errors in wind 

energy estimates... 

As we'll see in the next section, using mini-batches 

during training results in sporadic spikes in the 

overall MAE evolution, which translates to the 

MAE values utilized for validation. In addition, 

validation MAE appears to be steady despite 

training MAE's ongoing fall. Since there is a 

minimum 1% reduction in MAE in the final 100 

epochs, our svm classification method comprises 

training a deep NN for a maximum of 1,000 epochs 

(i.e., goes throught the entire training set). There 

are eight of these characteristics because we will 

create an input feature map for convolutional 

networks using each weather variable. Given the 

aforementioned possibilities, our sole alternatives 

are the following characteristics..: 

- For deep MLPs, we must select the mini-batch 

size, weight decay and dumping indices, the 

number of hidden layers (one or two), the number 

of hidden units per plane, and the number of hidden 

layers overall (which we indicate by MLP2). 

For the traditional deep CNN, we extend the deep 

MLP parameters by convolutional filter and 

pooling sizes, as well as their steps (which we refer 

to as CNN). 

For the LeNet CNN (also referred to as 

LeNet), we must select the deep MLP parameters, 

but we may streamline the other choices by 

selecting the filter and sharing sizes and strides as 

properly scaled duplicates of the selections we 

made for LeNet-5. 

In any case, it is clear that there are still 

too many hyperparameters for a full grid search, 

even with the earlier simplifications. We used a 

greedy approach to address this in which we first 

fixed the number of fully connected hidden layers 

at 2 and then performed Algorithm 1, which 

assesses models in terms of the MAE over the 

testing subset. Each of the algorithm's n = 50 

external rounds examines a concrete hyper-

parameter vector p.Hyper-parameters are taken into 

account for the fully connected layers' hidden unit 

count, weight decay multipliers used, dropout 

percentage, and given a dataset size. For each 

potential updating value pk from the list of values 

for the k-th the over to be investigated, m random 

hyper-parameter indexes are chosen on each 

external iteration. Both random choices are 

identical. The actual test results were 

– Hidden unit numbers: 50, 100, 150, 200, 

250, 300, 350, 400. 

 1: procedure Hyper-parameter search(n,m) iterations 

  

2: randomly initialize an hyper–parameter vector p 

: optimal hyper–parameter vector 

 4: for i = 1,...,n do 

 5: for j = 1,...,m do 

 6: k ← random value in {1,...,m} 

 7: pk ← random value in {v1
k,...,vN

k
k} 

 8: evaluate the p–parameterized model and update p∗ if needed 

 9: end for 

 10: end for 

11: return p∗ 12: end procedure 
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– Weight decay multipliers: 0.1, 0.2, 0.3, 

0.4, 0.5. 

– Dropout fractions: 0.3, 0.4, 0.5, 0.6, 0.7, 

0.8.– Minibatch size: 50, 100, 150, 200, 250, 

300. 

For the deep CNNs, the stride was 

adjusted to 1, and the filter and pool sizes were 

modified using a constrained heuristic search. Be 

aware that these modifications entail at least four 

more parameters, making it almost impossible to do 

a complete random search of the subspace. 

Convolutional feature maps are available in an 

analogous number. The following are the provided 

deep NN values from the hyperparameter search.: 

Table 2. Mean Absolute Errors for the Sotavento 

and REE problems 

 MAE Sotavento MAE REE  

Test Validation Train Test Validation Train  

SVR 7.80 6.73 5.62 3.13 3.30 1.01 

LeNet 7.63 6.25 5.82 3.13 3.01 2.48 

CNN 7.76 6.26 5.39 3.31 3.05 1.96 

MLP2 7.76 6.33 5.86 3.37 2.96 1.97 

MLP1 8.25 6.41 5.51 3.70 3.10 1.81 

The requirements for Deep MLPs (MLP2) for 

Sotavento are two hidden layers of 250 units each, 

a weight decay value of 0.3, a dropout coefficient 

of 0.7, and a mini-batch size of 200. The value 

decay and washout parameters, hidden layers 

layers, and 250-piece mini-batch for the REE 

variants will be the same. 

For Sotavento, the typical deep CNNs (CNN) will 

contain a first convolutional layer with 2 6 layers 

and max pooling across 2 2 patches. Following this 

layer are two 200 unit fully linked layers with no 

weight decay, a 0.7 dropout factor, and a 250 unit 

mini-batch size. The topology of the REE CNN 

remains same as; the first layer now includes 3 3 

filters, and maximum pooling is carried out over 3 

5 patches. Following this are two 400 unit layers 

with 0.3 and 0.7 weight decay and washout 

coefficients and 200 unit mini-batch sizes. For 

Sotavento, we employed 16 convolutional maps, 

while for REE, we used 8. 

A first convolutional layer with 2 2 filters and 

maximum pooling, as well as a second one with 4 2 

filters and 2 2 max pooling, are both features of the 

LeNet-5 (LeNet) network that has been modified 

for Sotavento. Following them are two 200 unit 

layers with complete connections, no weight decay, 

a dropout coefficient of 0.7, and a 250 mini-batch 

size..Two convolutional layers make up the LeNet 

network for REE; the first layer has 68 filters and 

22 maximum pooling, while the second layer has 

66 filters and 22 maximum pooling. Two layers 

with 200 units each with dropout and weight decay 

values of 0.3 and 0.7 are placed after them. These 

layers are totally coupled. For both tasks, we used 

32 and 16 convolutional feature maps in the first 

layer, respectively... 

 

V. SIMULATION AND RESULTS 
We also take into account a Gaussian SVR 

model and a "typical" 10-unit MLP with one 

hidden layer for comparison's sake. The SVR 

hyperparameters were determined via a grid search 

using the widely used LIBSVM software [6], and 

their best values were C=128.0, = 3.0518 105, 01 

for REE, 0625 for Sotavento, C=128.0, and = 

12.2078 105. For the traditional MLPs, we once 

more used Pylearn2-Theano, and the best 

Sotavento and REE parameters were 200 mini-

batch sizes and 0.001 weight decay coefficient, 

respectively.. 

Table 2. The Sotavento (top) and REE (bottom) 

deep models' training complexity parameters and 

times in seconds 

 

Model #Params. #Iters. Time Time/Iter. 

LeNet 140808 426 1175 2.76 

CNN 105736 500 705 1.41 

MLP2 332750 259 276 1.07 

LeNet 224776 949 19494 20.54 

CNN 548176 717 6880 9.60 

MLP2 4878300 258 1208 4.68 

Table 1 displays the training, validation, and test 

errors for the two tasks and the top models. As can 

be seen, the SVR and LeNet-5 models outperform 

one another in the REE problem, with the second 

and third-place finishes going to the other two deep 

models. The standard MLP comes in last place. The 

LeNet-5 model, therefore, is by far the most 

effective model in Sotavento, followed by the SVR, 

the two deep models, and the ordinary MLP. We 

stress that although we assess models with a 

straightforward train-validation-test technique, a 

more accurate comparison should be made using an 

appropriate statistical test, such as the well-known 

Wilcoxon Rank Sum test, which takes into account 

more than simply MAE.. 

Figure 1 depicts the development of the train, test, 

and validation errors for the top CNN and LeNet-5 

networks for Sotavento (top) and REE. (bottom). 

Although Sotavento's validating and test error 

history initially appears to be growing more 

smoothly, this is primarily due to a scale effect. 

Mini-batch training causes the enormous error 

oscillations (about twice as large for Sotavento than 

for REE). Although training error would continue 

to decrease because to the multiple classes of this 

problem, the lowest errors for Sotavento appear to 
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have essentially stayed at their current values. This 

is likewise true for the validity and test errors in 

REE..The vertical dotted line in both cases 

indicates the epoch with the lowest validation error, 

whereas the horizontal dotted lines suggest. 

The deep models used to resolve the Sotavento 

(top) and REE (bottom) problems' complexity 

parameters and training times in seconds are listed 

in Table 2. All models are rather large, especially 

those used for REE, as can be shown (remember 

that input dimensions are respectively 1,080 and 

15,960). Convolutional processes make 

feedforward passes and gradient backpropagation 

far more expensive for convolutional networks, 

even though they have fewer parameters than 

MLP2. We see that the smaller number of weights 

in LeNet for REE is caused by the larger filters 

used. 

Deep training must therefore make use of all 

available hardware-based advancements, which is 

fairly expensive.  

 
Figure 4 MAE and REE Matrixpredicting the 

next 24 steps 

A. Plotting the predicted values 

 
Figure 5 Predicted Values Plot 

 
Figure 6. Power generation prediction per 

month 

 
Figure 7  Wind speed prediction per month 

 
Figure 8  Wind pressure prediction per month 

 
Figure 9 Air temperature prediction per month 

 
Figure 10  Confusion matrix 

 
Figure 11 power generated through the year 

prediction 

 
Figure 12  Air pressure and temperature 

prediction for the whole year 

 

VI. CONCLUSION 
Deep neural networks are without a doubt 

quite powerful, but configuring and selecting the 

ideal hyper-parameters may be difficult. When 

calibrated properly, they may frequently produce 
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outcomes that are superior than those of other 

classical models, as we have demonstrated here on 

two wind energy scenarios. Because meteorological 

variables are included, both problems have a bi-

dimensional input structure and may thus be 

thought of as input channels. This might provide an 

explanation for why convolutional layers gave the 

best deep findings. While deep learning training 

demands a lot of processing, it also lends itself 

nicely to GPU usage and the huge speedups that 

GPUs offer.. 

In any circumstance, the work outlined 

here must be considered a first step. One major area 

of future study is to take into account various 

convolutional architectures, especially those of the 

AlexNet type ([14]). An easy solution is to attempt 

to reduce variance by combining multiple deep 

models (note that they naturally have a low bias). 

Given the high variability of validation during 

instruction, standard MLPs typically repeat training 

using different random phase transformations. 

However, a simpler, less expensive alternative is to 

select a set number M of the models with the 

smallest validation that were gained in a single 

training run as the ones used here.. 

A number of suggestions for architectures, 

model training, regularization, and stimulation have 

also been created as a result of the tremendous 

activity in deep learning. We are also pursuing 

some of these options. 
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